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AMraet. The inlinite-range Ashkin-Teller spin glass is studied by the replica method. 
Attention is focused on the implementation of Parisi‘s replica-symmetry-breaking scheme, 
and it is shown that, in general, two order-parameter functions are necessary to treat the 
problem. The change of behaviour of these timctions is analysed in the interpolating 
region between two particular cases of the model: the four-state clock and Potts spin 
glasses. For most of this interpolating h t e ~ a l ,  the four-state clock behaviour dominates 
through the prevalence of one of the functions; only when the four-state P,otts limit is 
approached, is it that both functions become of the Same order of magnitude and then a 
crossover OCCUIS. 

1. Introduction 

Generalizations of the infinite-range interaction Ising spin glass, i.e. of the 
Shemngton-Kirkpatrick (SK) model (Sherrington and Kirkpatrick 1975), have led to 
interesting results and open questions in the area of disordered magnetic systems (for 

’ reviews see Binder and Young 1986, van Hemmen and Morgenstem 1983, 1986, 
M6zard et al. 1987). In what concerns replica-symmetry breaking (Parisi 1979), the m- 

’ vector spin glasses (Gabay and Toulouse 1981) show a ‘conventional’ solution similar 
to that of the SK model (Gabay et al. 1982, Elderfield and Sherrington 1982). 
However, the same procedure when applied to quadrupolar glasses (Goldbart and 

’ Sherrington 1985) or to thep-state Potts model (Erzan and Lage 1983, Elderfield and 
Sherrington 1983a, b, c, Goldbart and Elderfield 1985), led to intriguing results. For 
the Potts-case, the slope of the conventional Parisi function becomes negative for 
p>2.82, whereas the order-function breaking point exceeds unity for p 2 4 .  Such 
anomalies, which are prohibited by Parisi’s theory (Parisi 1983, Houghton er al. 1983), 
appear as direct consequences of the absence of reflection symmetry in the spin 
variable. A step function, that is, the first stage in Parisi’s replica-symmetry-breaking 
scheme, was proposed as the stable solution for these’cases (Gross et al. 1985). 

In order to test if such anomalies are present in other models with absence of 
reflection symmetry on the spin variable, Nobre and Sherrington (1986) studied thep- 
state clock model. For this model, the reflection symmetry is present (absent) for 
every p even (odd). The ‘unconventional’ solution (step function) appeared only for 
p = 3 ,  whereas for all other values of p (including the odd ones), the conventional 
Parisi function was found. 
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In the present work we study a spin-glass version of the Ashkin-Teller model 
(Ashkin and Teller 1943). This model contains as particular limits bothp = 4 clock and 
Potts spin glasses. With that, we wish to investigate how the Parisi solution goes from 
its conventional (four-state clock) to the stepfunction form (four-state Potts). We 
show that, in general, two order-functions are necessary to treat the problem. 
Throughout most of the interval between these two limiting cases, one of the functions 
prevails. Only when one approaches the four-state Potts limit is it that both functions 
become of the same order of magnitude: then the crossover between the conventional 
to the step-function form occurs. 

In section 2 we present the spin-glass version of the Ashkin-Teller model we shall 
work with. A replica-symmetric solution and its different phases are described. In 
sections 3, 4 and 5, we apply replica-symmetry-breaking schemes and analyse the 
order functions, giving emphasis to the interpolating region between the four-state 
clock and Potts limits. Conclusions are drawn in section 6. 

2. The Ashkin-Teller spin glass 

The Ashkin-Teller spin glass is defined by the Hamiltonian 

H = C  [J j j (p ,p j+qq)+ LgpjpjujqJ 
(ill 

where p,,  U,( = 2 1) are Ising variables. In principle, the bond realizations {Jjj}  and {Ljj} 
can be completely independent (Christiano and Goulart Rosa 1986, Moreira and 
Christiano 1992), but in the present paper we shall concentrate our analysis on the 
case in which 

@i,} =A{JijI (2.2) 
or in other words 

We shall work in the infinite-ranged spin-glass version (Sherrington and 
Kirkpatrick 1975), for which the summation is over all pairs (ij] and the Jjj are 
quenched random "uplings distributed according to the probability 

P(Jjj)  = (N/~Z.P?)''~ ~X~[-N(J, . -J~/N)~/U~].  (2.4) 
The Hamiltonian in (2.3) is a very rich one, containing as particular limits two 

well-known models as described below. 
(a) A=O: one recovers the four-state clock spin glass, that is, two independent 

Ising models, already discussed elsewhere (Nobre and Shenington 1986, Nobre et al. 
1989). 

(b) A =  1: the Hamiltonian in (2.3) may be written as 

(W 

which gives in this limit, the four-state Potts model. 
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As far as replica-symmetry breaking is concerned, the limits 1 = 0 and A = 1 are 
very distinct from one another. The former presents a 'conventional' Parisi function, 
similar to that of the SK model, i.e. a monotonically increasing function followed by a 
plateau (Nobre and Sherrington 1986), whereas the later provides the peculiar step- 
function solution characteristic of Potts spin glasses (Gross et al. 1985). The main 
purpose of this paper is to analyse the intermediate region, O ~ , l = z l ,  interpolating 
between these two limits. 

Applying the usual replica trick (Edwards and Anderson 1975), one gets the free 
energy per spin in the thermodynamic limit ( N - + m ) ,  as the extrema1 problem 

1 
pf=lim - min[g(q@, u"fl)]. n "-0 

The functional g(qa8, uo6) is given by 

- 
where 

- In Tr exp {H& (2.7~) 

ands"=p"u". Asusual, aand~arerepl ica labe ls ;a ,~=I , .  . ,n.Thespinsand trace 
are single-site and denotes a sum over pairs of different replicas a#,% The two 
spin-glass parameters, 4" and uaB, are given respectively by 

(2.8a) 

(2.8b) 
where the () bracket denotes thermal averaging with respect to He, Similarly to what 
happens for the Potts case, in obtaining the functional g(qafl, u"8) above, a convenient 
non-zero choice of Jo was taken in order to ensure a stable spin-glass state at low 
temperatures (Elderfield and Sherrington 1983a, b, c, Goldbart and Elderfield 1985, 
Gross et al. 1985). 

It is important to note that for the case A=1,  i.e. the four-state Potts limit, the 
free-energy functional in (2.7) is symmetric with respect to the variables p a ,  0" and so. 
That gives 

(L=1). (2.9) q4 = ,,"B 

For A=O, one has the four-state clock limit, for which the averages over the ps 
decouple from those over us due to the independence of these variables. This leads to 
a 'collinear' spin-glass state on the average, although small fluctuations from collinear- 
ity can be verified as a consequence of.replica-sy"etry breaking (Nobre el! al. 1989). 
One bas 

u U # ' B , ( q ' L B ) Z  ~ (A=O) ~ (2.10) 
where the equality should hold only in the replica symmetry approximation. 

Although one knows that the replica symmetj  approximation (Sherrington and 
Kirkpatrick 1975) leads to instabilities in the spin-glass phase (de Almeida and 
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Thouless 1978), it is instructive to start with such an ansatz. One may predict the 
correct boundaries of the paramagnetic phase and obtain, most of the time, a good 
approximation of the true phase diagram. In order to do this, we take 

qa8 = q U@= (all pairs (ab)). (2.11) 

In this space, the free energy in (2.6) becomes 

where 

(2.12) 

(2.13~) 

(2.136) 

In the equations above 

and 

I, = 4 cosh 0 cosh E cosh q5 + 4 sinh 0 sinh E sinh q5 (2.154 

II = 4 sinh B cosh E cosh q5 + 4 cosh B sinh E sinh q5 (2.156) 

Z2 = 4 cosh B sinh E cosh q5 + 4 sinh 0 cosh E sinh q5 (2.1%) 

I, = 4 sinh 0 sinh E cosh q5 + 4 cosh 0 cosh E sinh q5 (2.15d) 

e=pJq1/2x E =/f3Jq"2y q5 = A f i J ~ " ~ z .  (2.15e) 

The phase diagram is shown in figure 1. Besides the paramagnetic phase (P), one 
has two spin-glass phases, SG1 and SG2. SG1 (q = 0; U f 0) is an king spin-glass phase 
in the variables = pa. The Ashkin-Teller spin-glass phase (SGZ), where both q and U 
are non-zero, is the one on which we shall focus our attention throughout the 
following sections. In this phase, the results U = q2 fora =0, and q = U for L = 1, follow 
trivially from equations (2.13). For L < l  @>1) one has q>u>O (u>q>O); the 
crossover between these two regimes occurs at the four-state Potts. As seen in figure 1, 
the phase SG2 is enhanced for A > 1; this is physically expected since in Hamiltonian 
(2.3) one has two Ising spin glasses (in the variables p and U, respectively), each 
subjected to a bond Gaussian probability distribution with a finite .I. These two 
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systems become strongly correlated as increases and so the Ashkin-Teller phase 
(SG2) dominates the king phase (SG1). 

In the following sections, we apply Parisi's replica-symmetry-breaking scheme 
(Parisi 1979) to the SG1 and SG2 phases, giving particular emphasis to the region of 
the Ashkin-Teller phase for which O s A s  1, interpolating between the four-state 
clock and Potts limits. 

3. Replica-symmetry breaking in the spin-glass phases 

From now on, we shall restrict OUT analysis to the region of the spin-glass phases (see 
figure 1) near the boundaries of the paramagnetic phase (P), i.e. r]-0, 1 4 . s  m 

z=(Tgz- 7)lTs Tgz = J @hase SG2). ( 3 4  

Therefore, the free energy in (2.6) may be expanded perturbatively in powtm of q" 

1 , SG2 , , 

0 0 1 2 3 h 

Figure 1. Phase diagram of the Ashkin-Teller spin glass in the replica symmetry 
approximation. The paramagnetic phase (P) (q = U = 0), has boundaries with two distinct 
spin-glass phases, namely SGl and SG2. SGl (q=O; u#O)  is an Ising spin-glass phase in 
the variable s=po. SG2 (q#O; u # O )  i s  the Ashkip-Teller spin-glass phase; for I <  
l ( A > l )  one hasq>u>O(u>q>O). thecrossover between these tworegimesoccurringat 
the four-state Potts limit (2 = l ) ,  where q =  u>O. 
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and U@; applying Parisi’s replica-symmetry-breaking scheme (Parisi 1979), one gets 
the following free-energy functional 

Pfb ,  U] = -@+a2(qz)+ b2(uZ) 

+&61:dx [xu3(x)+3u(x) I: d y u Z Q  11 
3 

-a4 r 

~Y[u’(x) - u’(Y)]~ 

where 

The coefficients above are given by 

ao=ln4+t(BJ)2(2+A2) 02=f(BJ)2KPJ)’- 11 

b2=~rl ’ (~J)’ [A2(~J)’ -  11 a3 = (B -V  a,= (3.5) 
The phase transition P-SG1 (APJ= 1 + O(7)) is properly described by setting 

q(x)=O; one reproduces the well-known results of the SK model, with the order- 
parameter function u ( x )  presenting the conventional behaviour. 
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For the phase transition P-SG2 (bJ= 1 + O(z); O S A S l ) ,  one has to consider the 
presence of both functions q(x )  and u ( x )  by solving the extrema1 equations 

(3.6) 

Taking derivatives of equations (3.6), one obtains 

where 

B[q,uI=2b2+A6a3 -xu(x)-  d y u b )  +a4 -a4 xq2(x)+ dyq'b) 1 1: I [ (  I: ) 

(3.8b) 

Z(u)q(x)+2xq(x)u(n)-2q(x) d y u b )  +.... (3 .8~)  I: 3 
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It is important to note that whenever q'(x)#O (q'(x) =O), equations (3.7) necessarily 
give u ' (x )#O (u'(x)=O).  For thex-region where both q ' ( x )  and u ' (x )  are non-zero, 
one obtains from equations (3.7) 

A [ q ,  u lB[q ,  .I - c14, ul=O. (3.9) 

Due to coupled terms, we were unable to solve equations (3.7) for q(x )  and u(x )  in 
general. In what follows, we treat the problem at first, in terms of step-function 
solutions; they represent the starting point towards Parisi's replica-symmetry- 
breaking scheme, providing a good qualitative behaviour for the true solutions. 
Afterwards, we discuss the general form of the Parisi's functions. 

4. The step-function solutions 

Throughout this section, we shall work with the step-function solutions as proposed by 
Gross et al. (1985) for the Potts spin glass. Such solutions can, in principle, be 
introduced for any value of L (not only for A = l), since they represent the first step in 
Parisi's replica-symmetry-breaking process. 

As argued before, whenever q'(x)#O (q'(x) =O), equations (3.7) necessarily 
imply u' (x)#O ( u ' ( x ) = O ) .  This gives the same breaking point for the two functions. 
Then one has 

q ( x ) = q m 8 ( x - f )  = o,e(x -2) (4.1) 

where Ob) is the usual step function, that is, 1 (0) for y > O  (y<O). Substituting (4.1) 
into (3.3) one gets a free energy per spin, f (qm,  um,f), which after extremization, 
leads to a breaking point 

f=Xo+f,+.  . . (4.2) 
with 

a 4 ( q 4 , + ~ d ' u 4 , ) ( ~ + f o - ~ f ~ )  -W2q:um-d4q~uZm 
f,=6- (4.2~) a3 2q: +a%; 

In the king spin-glass phase (SG1) one has 

(4 .34  
3 2  

Pa3 U, =-+ O ( f )  = q  + O(q2) 

f=f 1- -p- um+O(l12) = v + O(VZ) 

q m = o  

f , = O .  (4.36) 

giving a small value for the breaking point f, i.e. f + O  as r]-0, which is usually a 
characteristic of the conventional type of solution. Indeed, it is well known that for the 
king spin glass, the above solution is unstable and the correct one is a monotonically 
increasing function followed by a plateau (Parisi 1979). 

In the Ashkin-Teller spin-glass phase (SG2), io varies in the interval [0 ,1]  for 

a, 

a3 
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OSAS 1 ;  one can readily see that as A - t o , f ~ - t O ,  and f is dominated by f,, resulting 
in f = O(qm). However, as A increases, fo increases up to the limit A?,, = 1 for A = 1 (d 
equation (2.9)), such that in the four-state Potts limit one gets z? = 1 + O(q,). 

Two distinct types of solutions may be obtained for the phase SG2. First, there are 
solutions with u,eq,: 

a2 
a3 

qm = - + O(?) = z + O(7Z) ( 4 . 4 ~ )  

.x= - (;l:A2 --a 3 +- ;) qm+O(rZ) 

(4.4b) 

(4.4c) 

which are valid for most of the %interval of concern, except near the four-state Potts 
case. In this Limit ((1 -Az) -O(z)), one obtains 

( 4 . 5 ~ )  

(4.5b) 

or in other words, qm-0(r1/2) andf=l+0(z”2) ,  nearA=l. 
By investigating solutions for A slightly greater than 1 we found a discontinuous 

behaviour of the one-step Parisi function between the spin-glass phases SG1 and SG2, 
insofar as in the former the step is at a low value of f ( f 4 1 )  (see equation (4.3b)), 
whereas in the latter it is close to 1 ( 1  - f < l )  (see equation (4.5b)) for A nea.r 1. This 
may be related to the fact that the p-state Potts spin glass when treated i.n replica 
symmetry approximation presents a first-order phase transition only for p >is (Elder- 

. field and Shemngton 1983a), whereas the step-function solution is sufficient to lower 
the value of p for which that happens to p > 4  (Gross et al. 1985). 

Numerical solutions were obtained for OSAS 1 and temperatures near Ta (small 
z), confirming the results described above. In figures 2 and 3 we show respectively, the 
increase of U, with respect to q,  starting from U,-& (A = 0) up to U,= q, (A = 1) and 
the behaviour off with A, both for two different values of z. One can see that the ratio 
um/qm together with the breaking-point f remain very small (O(z)) throughout most of 
the A-interval; to lowest order, this region can be properly described in terms of the 
function q(x)  alone. Only as one approaches the four-state Potts regime is if: that the 
second function u ( x )  plays an important role; indeed, U, increases very rapidly to 
u,-q, and this effect is strongly correlated to a rapid growth o f f  towards 1. 

In the appendix we perform a stability analysis of the solutions in (4.1); unfortuna- 
tely, they lead to stability only in phase SG2 near the four-state Pom; regime 
( (1  -A2) - O(z)); everywhere else near the boundaries of the paramagnetic phase (P) 
(9-0, or z-0 and 04<x(z) ;~( r )= l - r /2+O(q$)) ,  they are unstable. 

In spite of their simplicity, the solutions proposed in (4.1) are able to pressnt some 
of the features of the true Parisi functions q(x) and u(x)  (which come from the full 
replica-symmetry-breaking scheme) as we shall see in the following section. 
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Figure 2. Plot of the ratio u./g, as a function of d(O4S1)  as obtained by solving 
equations (4.3) for two different values of z. 

5. The conventional Parisi solutions 

Throughout this section we shall search for solutions of equations (3.6) which are 
continuous, non-decreasing functions, as proposed initially for the SK model (Parisi 
1979), and generalized for the m-vector spin glasses (Gabay et al. 1982, Elderfield and 
Sherrington 1982). We call these the ‘conventional’ Parisi solutions, which, in the 
absence of a magnetic field, usually present a monotonically increasing part followed 
by a plateau. 

Figure 3. Plot of the breaking point f as a function of L(OS2.S 1) as obtained by solving 
equations (4.3) for two different values of r. 
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For the SG1 phase (q(x) =O), further derivatives of the second equation in (3.6) 
lead to a function u(x) which recovers the well-known solution of the SK model. For 
the phase SG2, as long as the breaking point* remains small (O(z ) ) ,  similarly to what 
happened in the previous section, one obtains solutions with u,<q,. B,y taking 
further derivatives of equations (3.7) one obtains 

(5.1~) 

(5.lb) 

where qm and U, are, to lowest order, given, respectively, by equations (4.4~) and 
(4.4b).. The region over which both 4'(x) and u'(x) are non-zero is small in this case, 
i.e. 

u'(t) 21% 
f = 2r+ A* - + O(2') = 22 + 7 + O(2'). 4" 1-a 

The above solutions are valid for most of the relevant &interval, with the (dominant 
behaviour dictated by q(x)  which is, to lowest order, I-independent (see figure 4(a)). 
To this order, q(x) is exactly the four-state clock Parisi function (Nobre and 
Sherriugton 1986) and therefore, this whole d-range is dominated by the :four-state 
clock spin glass. In particular, ford = O  one gets 

U@)= [q(x)I2+ 0(z3) (5.3) 
which is in agreement witii prediction (2.10), ensuring a collinear spin-gla<. *s state at 
low temperatures (Nobre et al. 1989). 

In the four-state Potts regime ((1 -Az- O ( t ) ) ,  one gets an abrupt increase in f and 
the solution described above is not valid anymore. Indeed, equation (2.9) implies 
q ( x ) = u ( x ) ,  and then one has for the region where q'(x)#O 

(5.4) 

which gives an acceptable solution as long as x is smaller thanfc(f,=0.174); we then, 
define dJz) as the value of d for which f ( z )  =f,. For A>A,(z), one obtains q'(x)<O, 
which according  to the physical -interpretation of the Parisi solution (Houg!nton et al. 
1983, Parisi 1983), leads to a negative probability, becoming therefore unaccepable. 
As suggested by the simple analysis done in the previous section, near the four-state 
Potts spin glass the breaking point f ( z )  grows very rapidly from O(z) to O(1). Thus, 
for values of A in this regime ((1 -az) -O(z)) such that 1 <Adz), the solutions are still 
of the conventional type (see figure 4(b)), whereas for A>X(z)=l-z/Z+ O(qk), the 
correct solutions are given by the step functions as described by equations (4.7) (see 
Figure 4(c)); their stability in this region is confirmed in the appendix. 

Although we could not prove the coalescence of the values of A for which the 
stability of the step functions breaks down, I ( t ) ,  and the slope of~the conventional 
solutions diverge, A,(?, we believe that to be true, as in the case of the Potts spin glass 
(Gross et al. 1985). Therefore, at the point d,(z) at which q' (x)+m,  stable step- 
functions solutions should develop. 
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0 E P i x  

Figure 4. Parisi functions for the Ashkin-Teller spin glass: (a) picture for most of the A- 
interval (OdSl); the function q(x )  prevails and therefore, the 4-state clock behaviour 
dominates; (b) as one approaches A= 1, the two functions become of the same order of 
magnitude. The conventional solutions are still valid as long as I is smaller than Adr); (c) 
this shows the fourstate Potts regime where the step-function solutions are stable 
(i(r)=GtSl; i(z)=1 -(r/Z)+ o(qi)). 

6. Conclusion 

We have studied an infinite-range spin-glass version of the Ashkm-Teller model for 
which the bond realizations {Lii} of the coupled term is related to those of the 
uncoupled terms ({Ji,}), by a factor 1. With this, one cap obtain as particular limits the 
king as well as both p = 4  clock (A=O) and Potts ( A = 1 )  spin glasses. The phase 
diagram of the model was obtained within a replica symmetry approximation, 
presenting two distinct spin-glass phases, namely an king and an Ashkin-Teller one. 
We have focused our attention on the investigation of the changing of the Parisi 
solution from its conventional (four-state clock) to the step-function form (four-state 
Potts) in the Ashkin-Teller spin-glass phase. We have shown that in general, two 
order-functions are necessary to treat the problem. For most of the interpolating 
region between these two models, the four-state clock behaviour dominates by means 
of the prevalence of one of the functions and, therefore, conventional Parisi solutions 
are obtained. Only when one approaches the four-state Potts limit is it that both 
functions become of the same order of magnitude and then the crossover between the 
conventional to the step-function form occurs. 
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Appendix 1. Stability analysis of the stepfunction solutions 

In this appendix we look at the stability of the step-function solutions for the 
Ashkin-Teller spin glass as proposed in section 4. We start by evaluating the stability 

where A [ q ,  U], B[q,  U] and C[q, U] are expressed in equations (3.8). To ensure 
stability, S[q,  U] must be negative definite, or in other words, all its eigenvahes should 
be negative (Thouless et al. 1980). 

For the solutions in (4.1) our stability matrix takes the form 

+ O ( q 3  (A.3) 
where A * ,  E,  and C? can be obtained by evaluating equations (3.8) for the 
step-function solutions in (4.1) at either side of the discontinuity (x=.fie; E+O). 
Neglecting terms O(qi )  one obtains 
A+(q,, ~ ~ , . f ) = 2 a ~ + a ~ ( ~ ~ u , - 2 q , ) + u ~ [ q ~ ( 7 - ~ ) - 6 A ~ q , u , - ~ ~ u ~ ( 2 - i ) ]  
B+(q,, U,, i) =2b,-A6a,Um+ U~[-J.‘C&+&I~V;(~ -231 
c+(q,, vm,,t)=Aza3qm -izu4g2m(4 -a) -U4a4qmu, 
A-(qm, U,, . f ) .=h2-2a3qm(l-f)  + Ua(1 -f)[&(s -3.f) -azq ,Um] 
B-(qm, U,, f )=2bz-%6~I~, ( l  -2) +a,(l -.f)[-A4q2,+&%;(5 -3.f)] 

C-(q,, U,, f )  =o. (-4.4) 
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We restrict our analysis to the longitudinal modes, similarly to the treatment of 
Thouless el al. (1980) for the SK model. In this case, one has to solve the set of 
eigenvalue equations, 

where (Pk(x) (k= 1,2) denote components of a two-dimensional vector 

One can readily see that the set of vectors 

where K* and E* arearbitrary constants andf+(x), g+(x) (f-(x), g-(x))  are vanishing 
functions for x<f(x>f), restricted to 

do form a complete set. They are orthogonal to each other and any two-dimensional 
vector may be expressed as linear combinations of them. 

Substituting the eigenvectors (A.7) into (AS), one obtains that the condition for 
stability is fulfilled only near the four-state Potts limit. This happens because a double- 
degenerate eigenvalue 

p=A-(qm, v m , 3  (A.lO) 

corresponding, respectively, to the third and fourth eigenvectors in (A.7), becomes 
positive as one decreases ,I away from ,I = 1, signalling the instability of solutions (4.1). 
Indeed, this eigenvector may be expressed in this region as 

(A.ll) 

which gives a critical value for I. 
z 

;n= 1 --+ O(q2,) (A.12) 2 

below which the step-function solutions are unstable. 
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